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A lattice Boltzmann method is developed for incompressible axisymmetric flows. Both force and source or
sink terms are incorporated into the lattice Boltzmann equation in a natural way, which is consistent in
dimension with the lattice Boltzmann equation. The correct macroscopic equations for incompressible axisym-
metric flows are recovered through the Chapman-Enskog expansion. It turns out that the added terms are
nothing but the additional in the governing equations for the axisymmetric flows compared with the Navier-
Stokes equations, resulting in a simple and efficient model. This provides an additional unique advantage that
the proposed scheme is naturally suitable for general axisymmetric flows involving more physical phenomena.
Two numerical simulations have been presented to verify the method.
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I. INTRODUCTION

It is not a dream but reality to simulate fluid flows with a
simple arithmetic calculation instead of using the compli-
cated flow equations. This is the basic idea behind the lattice
Boltzmann method, which is characterized by a simple pro-
cedure, parallel process, and easy and efficient treatment of
boundary conditions. The method has successfully been ap-
plied to different flow problems in science and engineering.
Although it was originally developed to simulate fluid flows
described by the Navier-Stokes equations, it has been im-
proved and extended to other flow problems. For example,
Swift et al. applied the lattice Boltzmann method to simulate
nonideal fluids �1�. Spaid and Phelan, Jr. solved the Brink-
man equation with the lattice Boltzmann method �2�. Zhou
developed the lattice Boltzmann models for shallow water
flows �3� and groundwater flows �4�.

Axisymmetric flows represent numerous important flow
problems in practice �5–9�. The three-dimensional �3D� lat-
tice Boltzmann method has been applied to simulating 3D
axisymmetric flows �10–12�, in which the cubic lattices and
a treatment of curved boundary are used. This implies that
one or more dimensional lattices are required for simulation
of the flows and hence the efficiency is reduced. Mathemati-
cally, 3D axisymmetric flows are effectively 2D problems in
a cylindrical coordinate system. To make use of this feature,
Halliday et al. �13� first studied the lattice Boltzmann
method for axisymmetric flows in 2001. They introduced
two source terms and recovered the macroscopic equations
for the axisymmetric flows. The method of Halliday et al.
has successfully been applied to a number of axisymmetric
flow problems �5,6,14�. However, the one term in the mo-
mentum equation related to radial velocity is missed from the
formulation of Halliday et al., which causes large errors for
axisymmetric flows with significant radial velocities in non-
straight pipes. This mistake is noticed and corrected by Lee
et al. �15�, demonstrating an accurate solution to flows when
radial velocities cannot be ignored. In addition, the method
of Halliday et al. has been extended to multiphase flow by
Premnath and Abrahamand �7� and two phase flow with large
density ratio by Shiladitya and Abraham �9�. Recently, fol-
lowing the similar idea to Halliday et al., Reis and Phillips

�8,16� modified the source terms in the approach of Halliday
et al. in a slightly different manner without the mistake made
by Halliday et al. The method was further successfully used
for two numerical tests by the authors �17�. The main draw-
backs of the existing methods are that the second source term
involves more complicated terms than the original equations
and the added forces cause inconsistency in dimension with
the lattice Boltzmann equation.

Therefore in this paper, a simple and natural scheme is
proposed to recover the macroscopic equations for the axi-
symmetric flows. The introduced source or sink and force
terms in the method are just equivalent to the additional in
the governing equations for the axisymmetric flows com-
pared with the Navier-Stokes equations for incompressible
flows, which is not only consistent in dimension with the
lattice Boltzmann equation but also enables the present ap-
proach generally suitable for axisymmetric flows involving
more physical phenomena. The new method has been ap-
plied to simulate two typical flows and the results are com-
pared with analytical solutions, demonstrating its accuracy
and applicability.

II. AXISYMMETRIC FLOW EQUATION

The governing equations for the incompressible axisym-
metric flows in a cylindrical coordinate system can be writ-
ten in tensor form as �18�

�uj

�xj
= −

ur

r
, �1�

�ui

�t
+ uj

�ui

�xj
= −

1

�

�p

�xi
+ �

�2ui

�xj
2 +

�

r

�ui

�r
−

�ui

r2 �ir, �2�

where � is the density, p is the pressure, t is the time, � is the
kinematic viscosity, i is the index standing for r or x, r and
and x are the coordinates in radial and axial directions, re-
spectively, ui is the component of velocity in the i direction,
�ij is the Kronecker delta function defined by
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�ij = �0, i � j ,

1, i = j ,
� �3�

and the repeated indexes are the Einstein summation conven-
tion, which means a summation over the space coordinates.
Such a convention is used throughout the paper without fur-
ther indication.

Incorporation of the continuity equation �1� into the mo-
mentum equation �2� results in

�ui

�t
+

��uiuj�
�xj

= −
1
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�xi
+ �

�2ui

�xj
2 −

uiur

r
+
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r

�ui

�r
−

�ui

r2 �ir.

�4�

It may be pointed out that the third term on the right hand
side of the above equation is missed in the method described
by Halliday et al. �13�.

III. LATTICE BOLTZMANN METHOD

A. Lattice Boltzmann equation

In order to simulate the axisymmetric flows, we propose
the following general lattice Boltzmann equation with source
or sink and force terms:

f��x + e��t,t + �t� − f��x,t�

= −
1

�
�f� − f�

eq� + ��t +
�t

Ke2e�iFi, �5�

where f� is the distribution function of particles, f�
eq is the

local equilibrium distribution function, �t is the time step,
e=�x /�t, �x is the lattice size, � is the single relaxation
time �19�, � is a source or sink term that will be defined in
Eq. �27� later, Fi is a force term that will be given by Eq.
�47�, and x is the space vector, i.e., x= �r ,x�, e�i is the com-
ponent of e�, which is the velocity vector of a particle in the
� link, and K is the constant defined by

K =
1

e2�
�

e�xe�x =
1

e2�
�

e�re�r. �6�

In the present study, the nine-speed square lattice shown
in Fig. 1 is used and e� is given by

e� = ��0,0� , � = 0,

	�e	cos
�� − 1�


4
,sin

�� − 1�

4


 , � � 0, � �7�

with 	� defined as

	� = �1, � = 1,3,5,7,

�2, � = 2,4,6,8.
� �8�

From Eq. �6�, we have K=6.
The fluid density � and velocity ui, are defined in terms of

the distribution function as

� = �
�

f�, ui =
1

�
�
�

e�i f�. �9�

The local equilibrium distribution function f�
eq is

f�
eq = w��1 + 3

e�iui

e2 +
9

2

e�ie�juiuj

e4 −
3

2

uiui

e2 � , �10�

which has the following properties:

� = �
�

f�
eq, ui =

1

�
�
�

e�i f�
eq, �11�

where

w� =�
4

9
, � = 0,

1

9
, � = 1,3,5,7,

1

36
, � = 2,4,6,8.

� �12�

B. Recovery of the axisymmetric flow equation

In this section, we perform the Chapman-Enskog expan-
sion to show how the macroscopic equations �1� and �4� are
derived from the lattice Boltzmann equation �5�. For this, we
assume that �t is small and equal to �,

�t = � . �13�

Substitution of Eq. �13� into Eq. �5� leads to

f��x + e��,t + �� − f��x,t� = −
1

�
�f� − f�

eq� + �� +
�

6e2e�iFi.

�14�

Taking a Taylor expansion to the left of Eq. �14� in time and
space around point �x , t�, we have

� �

�t
+ e�j
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�xj
� f� +

1

2
�2 �

�t
+ e�j

�

�xj
�2

f� + O��3�

= −
1

�
�f� − f�

eq� + �� +
�

6e2e�iFi. �15�

According to the Chapman-Enskog expansion, f� can be
written in a series of �,

f� = f�
�0� + �f�

�1� + �2f�
�2� + O��3� . �16�

The centered scheme �20� is used for both source term � and
force term Fi as

� = �x +
1

2
e��,t +

1

2
�� , �17�

and

Fi = Fix +
1

2
e��,t +

1

2
�� , �18�

which can also be written, via a Taylor expansion, as

�x +
1

2
e��,t +

1

2
�� = � + �

1

2
 �

�t
+ e�j

�

�xj
�� + O��2� ,

�19�

and
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Fix +
1

2
e��,t +

1

2
��

= Fi�x,t� +
1

2
� �

�t
+ e�j

�

�xj
�Fi�x,t� + O��2� . �20�

After substitution of Eqs. �16�, �19�, and �20� into Eq. �15�,
the equation to order �0 is

f�
�0� = f�

eq, �21�

to order �
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and to order �2
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Using Eq. �22�, we can write the above equation as

1 −
1

2�
� �

�t
+ e�j

�

�xj
� f�

�1� = −
1

�
f�

�2�. �24�

From Eq. �22� � Eq. �24� �, we have

 �

�t
+ e�j

�

�xj
� f�

�0� + �1 −
1

2�
� �

�t
+ e�j
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� f�

�1�
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1

6e2e�iFi. �25�

Summation of the above equation over � provides

�

�t��

f�
�0�� +

�

�xj
�

�

e�j f�
�0�� = 9� . �26�

Notice that Eq. �21� and substitution of Eq. �11� into the
above equation result in the continuity equation �1�, if the
density variation is small enough and can be neglected, with
� defined by

� = −
�

9

ur

r
, �27�

Taking �e�i �Eq. �22� � � Eq. �24�� about � yields

�

�t��

e�i f�
�0�� +

��ij
�0�

�xj
=

��ij

�xj
+ Fi, �28�

where �ij
�0� is the zeroth-order momentum flux tensor given

by the following expression:

�ij
�0� = �

�

e�ie�j f�
�0�, �29�

and

�ij = −
�

2�
�2� − 1��

�

e�ie�j f�
�1�. �30�

Evaluating terms in Eq. �29� with Eq. �10�, we have

�ij
�0� = p�ij + �uiuj , �31�

where p=�e2 /3 is the pressure, leading to a sound speed
Cs=e /�3. Substitution of the above equation into Eq. �28�
results in

���ui�
�t

+
���uiuj�

�xj
= −

�p

�xi
+

��ij

�xj
+ Fi. �32�

Applying Eq. �22� we can rewrite Eq. �30� as

�ij = �ij
�1� −

�

2
�2� − 1��

�

e�ie�j� , �33�

in which �ij
�1� is the first-order momentum flux tensor,

�ij
�1� =

�

2
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�

e�ie�j	 �

�t
+ e�k

�

�xk
� f�

�0�
 , �34�

which can also be written with Eq. �29� as

�ij
�1� =

�

2
�2� − 1�

�

�t
�ij

�0� +
�

2
�2� − 1�

�

�xk
�
�

e�ie�je�kf�
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�35�

The second term in the above equation can be evaluated with
Eqs. �10� and �21�

�

�xk
�
�

e�ie�je�kf�
�0� =

e2

3

�

�xk
��ui� jk + �uj�ki + �uk�ij� .

�36�

If we assume that characteristic velocity is Uc, length is Lc
and time is tc, we have that the term �� /�t�ij

�0�� is of order
�Uc

2 / tc and the term �� /�xk��e�ie�je�kf�
�0�� is of order

�e2Uc /Lc, based on which we obtain that the ratio of the
former to the latter terms has the order

O �/�t�ij
�0�

�/�xk��e�ie�je�kf�
�0�� = O �Uc

2/tc

�e2Uc/Lc
� = OUc

e
�2

= OUc

Cs
�2

= O�M2� , �37�

in which M =Uc /Cs is the Mach number. It follows that the
first term in Eq. �35� is very small compared with the second
term and can be neglected if M �1; hence Eq. �35�, after Eq.
�36� is substituted, becomes

�ij
�1� =

e2�

6
�2� − 1�

�

�xk
��ui� jk + �uj�ki + �uk�ij� , �38�

or

�ij
�1� = �	 ���ui�

�xj
+

���uj�
�xi

+
���uk�

�xk
�ij
 �39�

with the kinematic viscosity defined by
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� =
e2�t

6
�2� − 1� . �40�

Inserting Eq. �39� into Eq. �33� and evaluating the rest terms
of the equation, we obtain

�ij = �	 ���ui�
�xj

+
���uj�

�xi
+

���uk�
�xk

�ij
 − 18���ij , �41�

which is differentiated with respect to xj, giving
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= �
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	 ���ui�

�xj
+

���uj�
�xi

+
���uk�

�xk
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Substitution of Eq. �27� into the above equation leads to
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�xj
= �

�2��ui�
�xj

2 + 2�
�2��uj�
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+ 2�
�
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�ur

r
� . �43�

After applying the continuity equation �1�, we have

��ij

�xj
= �

�2��ui�
�xj

2 . �44�

Combining this with Eq. �32� results in

���ui�
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+
���uiuj�

�xj
= −
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�xi
+ �

�2��ui�
�xj

2 + Fi. �45�

Again, the density variation is assumed to be small enough,
Eq. �45� can further be written as

�ui
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��uiuj�
�xj

= −
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+ �

�2ui

�xj
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�
. �46�

Clearly, if we set

Fi

�
= −

uiur

r
+

�

r

�ui

�r
−

�ui

r2 �ir, �47�

Eq. �46� is just the momentum equation �4�.
The calculation of Fi normally involves the velocity de-

rivatives with respect to coordinate r. In order to find an
efficient way in more consistent with the philosophy of the
lattice Boltzmann method, we combine Eqs. �30� and �41�
and have

�	 ���ui�
�xj

+
���uj�

�xi
+

���uk�
�xk

�ij
 − 18���ij

= −
�

2�
�2� − 1��

�

e�ie�j f�
�1�. �48�

Rearranging Eq. �16� gives

f�
�1� =

1

�
�f� − f�

eq� + O��� . �49�

Applying this equation to Eq. �48� results in

�	 ���ui�
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+
���uj�
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+

���uk�
�xk

�ij
 − 18���ij

= −
2� − 1

2�
�
�

e�ie�j�f� − f�
eq� + O��2� . �50�

The above equation can be used to evaluate

�ux

�r
= −

3

��e2�t
�
�

e�xe�r�f� − f�
eq� −

�ur

�x
�51�

and

�ur

�r
= −

3

2��e2�t
�
�

e�re�r�f� − f�
eq� −

1

2

ur

r
, �52�

reducing the calculations of the two derivatives �ux /�r and
�ur /�r in Eq. �47� to one �ur /�x only, which can easily be
determined with a finite difference scheme.

C. Features of the method

First of all, as seen from Eqs. �27� and �47�, the added
source or sink and force terms are just the additional in the
governing equations for the axisymmetric flows compared
with the Navier-Stokes equations for incompressible flows;
hence it may be the simplest method. This is distinct from
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1

FIG. 1. Nine-speed square lattice.
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the existing methods. In the method of Halliday et al. �13�,
the second force term has as many as five terms involving all
the velocity derivatives with respect to both coordinates,
which is more complicated than the original governing equa-
tions. Although the method is successfully applied to some
axisymmetric flows �7,9,14�, Lee et al. �15� have noticed that
the term of uiur /r is missed in the method and shown that
this term plays an important role in producing accurate solu-
tions to axisymmetric flow problems with relatively larger
radial velocity. They have then added the missing term in the
method of Halliday et al. and demonstrated that the corrected
force term can generate accurate solutions. As a result, the
force contains more than ten terms, making the method more
complex. Using the same idea of Halliday et al., Reis and
Phillips �8,16� provide the modified force, which also con-
sists of more than ten terms.

Then, another feature is that the introduction of source or
sink and force terms in the proposed method retains the con-
sistency in dimension with the lattice Boltzmann equation
�5�. However, in the existing methods based on the approach
of Halliday et al. the inclusion of force terms in that way
inevitably leads to dimensional inconsistency in the lattice
Boltzmann equation.

Finally, it is simple and straightforward to apply the
present method to general axisymmetric flows which contain
more additional terms than that given by Eqs. �1� and �4�.
For example, there are still additional external forces in the
momentum equations for flow problems such as combustion.
In this case, as long as the same additional terms are directly
added in the expression �47� the proposed method will auto-
matically recover the correct macroscopic equations without
any further mathematical manipulation and can then be ap-
plied to solve the problem straightaway. On the other hand,
to introduce an additional term like this for combustion in
the existing methods will result in the force expressions to be
derived again to recover the macroscopic equations, leading
to more terms in the force expressions �15�.

IV. NUMERICAL RESULTS

The method is applied to solve two flow problems, an
unsteady Womersley flow and a steady flow through a pipe
consisting of contraction followed by expansion. The results
are compared with available analytical solutions. In the
simulations, the bounce-back scheme is applied for no-slip
boundary conditions along pipe walls. In addition, the lattice
is arranged in such a way that the x axis is located both along
the centerline of a pipe and in the middle of the two con-
secutive horizontal lattice lines in order to avoid the singu-
larity at r=0 in the terms � and Fi calculated from Eqs. �27�
and �47�, respectively. All the dimensional physical variables
in SI units are used in the numerical computations.

A. 3D Womersley flow

The 3D Womersley flow or a pulsatile flow is an axisym-
metric flow in a straight pipe. It is driven by a periodic pres-
sure gradient at the inlet of the pipe and the pressure gradient
is normally given by

dp

dx
= p0 cos��t� , �53�

where p0 is the maximum amplitude of the pressure variation
and �=2
 /T is the angular frequency, in which T is the
period.

The Reynolds number is defined as Re=UcD /� with the
characteristic velocity Uc given by

Uc =
p0�2

4��
=

p0R2

4��
, �54�

in which �=R�� /� is the Womersley number, where R is
the pipe radius and D is the diameter. The analytical solution
for the velocity component in the axial direction for the
Womersley flow is
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ux�r,t� = Re� p0

i��
	1 −

J0�r�/R�
J0��� 
ei�t� , �55�

where J0 is the zeroth order Bessel function of the first type,
i is the imaginary unit, �= �−�+ i�� /�2, and Re denotes the
real part of a complex number.

The implementation of the periodic pressure gradient can
be achieved by either applying an equivalent periodic body
force �21� or specifying periodic pressure at the inlet and
fixing the outlet pressure �22�. In the present study, the
former is used, i.e., an additional body force is added to the
existing force term Fi,

Fi = −
�uiur

r
+

��

r

�ui

�r
−

��ui

r2 �ir + p0 cos��t��ix. �56�

In the computation, �=3, p0=0.001, D=40, T=1200, �
=8, UC=1, which give Re=1200. �=0.6 and 8442 lattice
are used in the simulation. The numerical solutions at differ-
ent times are obtained after initial running time of 10T. The

corresponding results for velocity ux are shown in Figs. 2 and
3, in which they are further compared with the analytical
solution �55�, showing good agreement.

B. Steady flow through constricted pipe

We consider a steady flow through a constricted pipe with
the diameter of D=40 m. The geometry of the pipe with the
stenosis is described by the following function;

r�x� = R −
0.5R�1 + cos�
x/D��

2
, �− D � x � D� ,

�57�

and shown in Fig. 4, where R=D /2, L1=3D, and L2=8D.
In the numerical calculation, a parabolic profile for the

velocity component ux in the axial direction is specified at
the inflow boundary,
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FIG. 9. Comparisons of velocity ur with the method of Halliday
et al. for Re=12.3.
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ux = U0	1 −  r

R
�2
 , �58�

with U0=0.01 m /s and the zero gradient for pressure is ap-
plied at the outlet boundary. 45142 lattices are used with
flow density of �=3 kg /m3. The Reynolds number is Re
=4.1 �Re=U0D /��. After the steady solution is reached, the
velocity vectors are depicted in Fig. 5. The velocity profiles
for two components ux and ur are shown in Figs. 6 and 7,
respectively, which are in close agreement with that reported
in the literature �15�.

Finally, the proposed method is further tested with a
larger Reynolds number, Re=12.3. The results are shown in
Figs. 8 and 9 and compared with that by the method of
Halliday et al. �13�, showing that there is clear discrepancy
between the results at positions where radial velocities are
not small. In particular, the method of Halliday et al. under-
predicts the velocity ux at x=0, but overpredicts at x=0.5D
and x=1D. For velocity ur, the method of Halliday et al.

underpredicts at x=0.5D, but overpredicts at x=0 and x
=1D. These findings are in good agreement with that re-
ported by Lee et al. �15� and confirms that the missing term
is important to produce accurate solutions to flows where the
radial velocities cannot be neglected.

V. CONCLUSIONS

A simple lattice Boltzmann method for axisymmetric
flows is presented. It is a natural and straightforward exten-
sion of that for Navier-Stokes equations. The introduction of
the source or sink and force terms is consistent in dimension
with the lattice Boltzmann equation. The added terms turn
out to be the additional in the governing equations for the
axisymmetric flows compared with the Navier-Stokes equa-
tions, leading to a general model for axisymmetric flows in-
volving more physical phenomena. Its accuracy has been
validated with two numerical tests. The model is able to
predict steady and unsteady axisymmetric flows.
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